Stress Promotes the Development of Endometriosis

Qiqi Long, M.D.

Obstetrics and Gynecology Hospital of Fudan University
Women with endometriosis (EM) experience elevated stress

- Dysmenorrhea
- Chronic pelvic pain
- Infertility
- Psychoemotional distress

Chronic stress

- Higher serum cortisol level in women with endometriosis

Does stress promotes the development of endometriosis?

In Rats

In an animal research, female rats were subjected to swim stress for 10 consecutive days prior to the surgical induction of endometriosis.

The results showed that: **prior exposure to stress increased both the number and severity of endometriotic vesicles found in animals with endometriosis.**

• **In Humans**

 • Up-regulated encoding gene expressions of corticotropin-releasing hormone (CRH), urocortin, and glucocorticoid receptor (GR) in ectopic endometrium.

 • Improved symptoms after interventions which reduces stress level in women with endometriosis.

Does psychological stress promote the development of endometriosis?
32 female C57 mice

Control (N=8)

SHAM (N=8)

EM (N=16)

Control (N=8)

Stress (N=8)

Lesion size, Immunohistochemistry (ADRB2, VEGF, PCNA, CD31)

Day 0 Induction

Stress

Day 14 Sacrifice
Psychological stress

• Mice were exposed to the one-year-old male cats every other day for 14 days.

• Mice were in a cage placed in another bigger cage that housed the cat for 24 hours.

• This cat had received no food and water for 12 hours.

• Change the cat every 8 hours.

• Make sure that all mice cannot be physically attacked by the cat, but will be under constant gaze and harassment from the cat.
Total lesion size

![Box plot showing total lesion size for two groups (STRS and USTRS).]
Immunohistochemistry

A: Beta2 receptor

B: VEGF

C: MVD-CD31

D: PCNA
Does the timing of the stress make any difference?
Experimental Design

- 36 female mice
 - Control (N=9)
 - Stress-before-induction (N=9)
 - Stress-after-induction (N=9)
 - Stress before-and-after induction (N=9)

Day -14
- Day 0 Induction
- Day 14 Sacrifice

Lesion weight, Immunohistochemistry (ADRB2, VEGF, PCNA, CD31)
Animal Model

• 8-week female BALB/c mice

• Endometriosis Model: Endometrium fragments of donor mice were intraperitoneally injected to recipient mice.

Chronic Immobilization Stress:

The mice were immobilized in the fixator for 2 hours per day without food and water.
Results

Lesion weight (g)

[Graph showing lesion weight for Control, Before, After, and Entire categories, with statistical significance marked by * and **]
<table>
<thead>
<tr>
<th>Protein</th>
<th>Control</th>
<th>Before</th>
<th>After</th>
<th>Entire</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADRB2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEGF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ADRB2

- Control
- Before
- After
- Entire

PCNA

- Control
- Before
- After
- Entire

VEGF

- Control
- Before
- After
- Entire

CD31

- Control
- Before
- After
- Entire

Note: The asterisks indicate statistical significance.
Is it possible to mitigate the promotional effect of stress by β-blockers?
Experimental Design

PBS(C) (N=10) → Propranolol(P) (N=10) → Propranolol + stress(PS) (N=10) → PBS + stress(S) (N=10) → stress

Day 0 Induction, Implantation of Alzet pumps

Day 14 Sacrifice

Lesion weight, Immunohistochemistry (ADRB2, VEGF, PCNA, CD31)
Results

Lesion weight (g)

The graph shows the comparison of lesion weight among different groups: PBS, Propranolol, Propranolol+stress, and PBS+stress. The PBS+stress group has the highest lesion weight, significantly higher than the other groups. There are no significant differences among the PBS, Propranolol, and Propranolol+stress groups.
Immunohistochemistry

<table>
<thead>
<tr>
<th></th>
<th>PBS</th>
<th>Propranolol</th>
<th>Propranolol+Stress</th>
<th>PBS+Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADRB2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEGF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Stress promotes the development of endometriosis.

• Timing of the stress does not seem to make much difference.

• Increased duration of the stress may further promote the development of endometriosis.

• β-blockers may be effective in mitigating such a promotional effect.
Acknowlegement

• Prof. XiShi Liu

• Prof. Sun-Wei Guo

• Qi Zhang M.D.

• Ding Ding M.D., Ph.D.